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Introduction 
 

Many toxic substances are used by humans and then 

release into environment so that it polluted the 

environment that is why it is necessary to degrade 

this toxic compounds. Excessive hazardous waste 

discharge in a clean water and soil disturbances, 

restricting agricultural production. (Kamaludeen et 

al., 2003). This is accomplished through falling pest 

damage to agricultural crops. (Schmidt-Jeffris et al., 

2018). Weeds, herbs, bugs, rodent, worm, and 

microbes are examples of pests like bacteria, fungi, 

and algae (Bottrell et al., 2018; Duke et al., 2018). 

Pesticides are categorized according to their desired 

use and play an important role in enhancing crop 

productivity and reducing agricultural losses due to 

pests. (Allmaras et al., 2018).  

 

Rigorous use of pesticides results in contamination 

of soil, agricultural spills biologically expand water 

bodies and increased toxicity levels at all trophic 

stages of the food web such as, DDT - 
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Pesticides, insecticides, certain pharmaceuticals, chemically dangerous chemicals 

which can pollute the environment. Pesticides are primarily used to manage plants, 

flies, parasitic fungus, and parasites in crop fields. The desire to limit pesticide 

effects on soil and offsite environments has encouraged research interest in 

pesticide and related chemical biodegradation. As a result, quick and safe agents for 

environmental bioremediation, individual decontamination, and therapeutic 

detoxication are urgently needed. Bioremediation is environment friendly so if we 

use such kind of technique then more helpful. The ability of microorganisms to 

degrade complex chemical substances in the environment is referred to as 

bioremediation. The discovery of CRISPR, mechanism of the CRISPR-based 

nuclear adaptive immune system "CRISPR associated system, Cas", and its 

diversion to powerful tools for gene editing revolutionize the field of molecular 

biology. Brought about and stimulated new and improved gene therapy. By using 

CRISPR technique transfer desired gene and decrease toxic elements. 
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dichlorodiphenyltrichloroethane. (Thomas et al., 

2008; Plattner et al., 2018; Silva-Barni et al., 2018). 

Apart from that, pesticides also affect the function of 

organs and damage DNA at the molecular level, 

adversely affecting health and leading to 

neurological disorders and cancer. B. Azoxystrobin 

and atrazine (Singh et al., 2018; 

Vidartd’EgurbideBagazgoïtia et al., 2018; Fatima et 

al., 2018). Pesticide residues are removed and 

decomposed using traditional bioremediation 

methods (Moorman et al., 1994; John et al., 2018). 

 

Biological agents used by Bioremediation process, 

mainly microorganisms to clean up polluted soil and 

water (Strong and Burgess et al., 2008). 

Bioremediation is a method that utilizes microbes or 

their enzymes to restore the environment to its 

original form after it has been contaminated. 

Different type of gene editing technique was 

produced like TALEN, ZFN, CRISPR etc. but 

mostly CRISPR technique is being used because it 

has high target recognition efficiency, low mutation 

rate and many more.  

 

CRISPR-Cas-mediated genome editing is easy-to-

use method to precisely alter DNA sequences within 

the genome of living organisms. This method is 

frequently accepted and further modified as a result 

of its simplicity and efficiency, resulting in a very 

strong molecular tool. CRISPR techniques are 

mostly used for genetic editing to transfer more 

valuable genes to other organisms so that giving 

them even more power over toxic chemicals. It 

could accelerate the procedure of organic 

bioremediation without adding significant charges or 

risks. 

 

Bioremediation 

 

To clean up polluted soil and water, bioremediation 

involves biological agents, mostly microorganisms 

such as fungus, yeast, or microbes. Microorganisms 

use pathogens as nutritional or sources of energy in 

bioremediation processes (Agarwal et al., 1998; 

Tang et al., 2007). Various enzymes effective for 

decomposing pesticides has been discovered in 

environment (Geed et al., 2016; Iyer et al., 2013; 

Dawson et al., 2008; Pizzul et al., 2009; Brar et al., 

2017; Diao et al., 2013; Yair et al., 2008). 

Bioremediation can be used to target particular 

toxins like chlorinated insecticides, which are 

destroyed by microorganisms. 

 

Bioremediation, is the process of degrading 

environmental pollutants towards less hazardous 

forms using living organisms, typically microbes. It 

degrades or detoxifies pesticides that are toxic to 

humans and/or the planet using naturally occurring 

bacteria, fungus, or flora. Through bioremediation, 

micro-organisms utilize insecticides as co-substrates 

in their metabolism with other nutrients, thereby 

removing them from the surroundings.  

 

The effectiveness of these mechanisms is 

determined by pesticide features like as dispersion, 

bioavailability, and land persistence. Pesticide 

availability to microorganisms must be improved; 

this is hampered by pesticide adherence to sand 

grains and their poor water solubility (Ortiz-

Hernández et al., 2014). The development of novel 

microbial bioremediation methods might be sparked 

by genome editing techniques.  

 

What is CRISPR–Cas? 

 

Even though the discovery of artificially created 

meganucleases, followed by ZFNs and TALENs, 

improved genome-editing efficiency, re-designing or 

re-engineering a fresh set of proteins was necessary 

to target multiple areas in the genome. The 

complexity of cloning and protein engineering ZFNs 

and TALENs so that different types of technique 

found and adopted which is easy compare to old 

techniques. By compared to TALENs and ZFNs, 

CRISPR-Cas is the cheapest, simplest, and easiest 

gene editing method for scientists to use (Ju et al., 

2018).  

 

CRISPR Cas is a site-specific gene editing tool that 

was recently developed from a naturally occurring 

RNA-guided endonuclease. Based on the study, 

several teams developed CRISPR/Cas9, a method 
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that is now employed in most modern 

biotechnology. The CRISPR gene-editing system is 

made up of an endonuclease protein with DNA-

targeting selectivity and slicing activity that can be 

controlled by a short guide RNA. Clustered 

regularly interspaced short palindromic repeat DNA 

sequences (CRISPR) is an initials for clustered 

regularly interspaced short palindromic repeat DNA 

sequences. The CRISPR repeat clusters were 

separated by non-repeating DNA sequences termed 

spacers, unlike usual tandem repeats in the genome. 

 

CRISPR-Cas is a genome - editing method that is 

both efficient and effective (McMahon et al., 2018). 

Cas is a CRISPR-associated protein that is act like 

molecular scissors to cut DNA. Cas proteins chop 

off a section of viral DNA when a virus infects 

bacteria to insert into the CRISPR region of the 

bacteria. Obtaining a chemical representation of the 

infection. Those viral sequences are subsequently 

replicated into RNA fragments.  

 

This molecule plays various roles in our cells, but in 

the case of CRISPR, RNA binds to a special protein 

called Cas9. The resulting complex is act like 

scouts, latching onto free-floating genetic material 

and searching for a match to a virus. If the virus 

attack again, the scout complex immediately 

recognizes it and Cas9 swiftly destroys the viral 

DNA. Now CRISPR not only for vial but also any 

organism DNA is modified.  

 
There are 3 types of CRISPR-Cas systems, namely 

Types I, II, and III (Zhu et al., 2018), and many 

other subtypes (Behler et al., 2018). As per system 

acting, i.e., model organisms, each system has its 

own Cas (Cooper et al., 2018). Cas9, a DNA 

endonuclease, is directed by RNA to impede foreign 

DNA (Mahas et al., 2018). CRISPR consists of a 

30–40 bp repetitive sequence separated by a spacer 

region that complements the foreign sequence, 

which is subsequently processed and translated into 

crRNA (Zhang et al., 2018). CRISPRs are then used 

to generate the gRNA (guide RNA) (Listgarten et 

al., 2018). CrRNA and Cas protein combine to 

generate crRNP (ribonucleoprotein), which causes a 

break in the intruder's DNA/RNA (Majumdar et al., 

2017). CRISPR's particularity and specificity in 

function are due to gRNA's exact binding to the 

target DNA region (Shah et al., 2018). By use of 

CRISPR/Cas, the gene of interest may be altered 

(deleted or inserted) from the system by creating a 

double strand break (DSB) at the target location 

(Shapiro et al., 2018). The best expression method 

for achieving the CRISPR-Cas gRNA sequence, the 

codon-optimized Cas9 variant, and optimum 

promoters for sgRNA and Cas9 transcription (Rico 

et al., 2018). 

 

Application of CRISPR-Cas 

 

The CRISPR/Cas9 technology was created for 

multi-locus editing and biochemical pathways that is 

rapid, effective, accurate, and simple. Various 

CRISPR–Cas methods are being used by researchers 

to identify viruses early, quickly, and efficiently. 

 

In Fig. 2 different applications are mentioned: 

 

Some of Pesticides which affect the environment 

 

In last few decades, the usage of Pesticides has risen 

(Huang et al., 2019; Bilal et al., 2019; Lin et al., 

2020). Organophosphates, pyrethroids, and 

carbamates, organochlorines, are the most common 

pesticides and the threshold for dangerous 

concentration varies depending on the types of 

pesticide (Pang et al., 2020; Zhang et al., 2020). 

Mention some of pesticides: 

 

Organophosphate compounds 

 

Both naturally occurring biomolecules and 

commercial products such as fertilizers, insecticides, 

and herbicides include OP (Organophosphates) 

components. Pest control is among the most 

important tasks for a good yield (Peshin et al., 

2014). Pesticides have become vital as a result, and 

they are now employed in the manufacture of 

roughly one-third of all farm products (Zhang et al., 

2011). Chemicals and pesticides that are used to kill 

bugs. Insecticides, herbicides, weedicides, 
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bactericides, fungicides, and larvicides are grouped 

into numerous classes based on the sorts of bugs 

they target. 

 

They can be found in all ecosystems, including land, 

water, and atmosphere, as a result of their overuse. 

As a result, pollution and numerous illnesses have 

increased (Chen et al., 2004; Liu et al., 2008; Zhang 

et al., 2011; Zhang et al., 2017; Zhang et al., 2018).  

 

Organophosphate pesticides contribute for over 70 

percent of all pesticides used worldwide, and are 

thought to be responsible for around 2.5 million 

toxicosis and accounting for 86.02 percent of all 

incidents (Zhang et al., 2011). Malathion, parathion, 

methyl parathion, monocrotophos, chlorpyriphos, 

dimethoate, dichlorovos, and other organophosphate 

pesticides are some of the most frequently used. 

Several microorganisms have been shown to have 

the ability to degrade these insecticides.  

 

Organophosphate causes inactivation of acetyl 

cholinesterase it produces toxicity in different 

organs. It causes bronchorrhoea, 

bronchoconstriction, bradycardia, miosis in the eye, 

muscle fasciculations and flaccid paralysis. 

(Kamanyire and Karalliedde, 2004) 

 

One of the organophosphate, malathion causes 

nephrotoxicity, hepatotoxicity, neurotoxicity, 

endocrine disruption, DNA damage and apoptosis. It 

also produces carcinogenicity, genotoxicity, 

reproductive organs toxicity. (Badr, 2020) 
 

Xenobiotic compounds 

 

"Xenobiotics" are artificial chemicals that are 

chemically unique from, molecules found naturally 

that are derived through biological and abiotic 

processes. Xenobiotic substances are frequently 

identified in supplies of toxic waste. Surface runoff, 

transportation emissions, heating, urban wastes, and 

natural disasters all contribute to the increased 

prevalence of these compounds in the environment. 

The primary cause of large-scale pollution is 

industry, Medicines, environmental contaminants, 

food additives, hydrocarbons, Carcinogens, and 

pesticides are all examples of xenobiotics.  

 

Due to their recalcitrant qualities, xenobiotics such 

as polychlorinated biphenyls (PCBs), 

trichloroethylene (TCE), polycyclic aromatic 

hydrocarbons (PAHs) enter the environment and 

have become a source of worry contaminants and 

accumulation. Large businesses including 

medicines, fossil fuels, pulp and paper bleaching, 

and agriculture are some of the primary drivers of 

pollution and xenobiotic introduction into the 

surroundings.  

 

Carbamates compounds 

 

Carbamates are a kind of insecticide that resembles 

organophosphate (OP) insecticides in structure and 

mechanism. Carbamates are N-methyl carbamates 

made from carbamic acid that promote 

acetylcholinesterase carbamylation at neuronal 

synapses and neuromuscular junctions. 

Trimethacarb, carbaryl, ethinenocarb, fenobucarb, 

methomyl, oxamyl, pirimicarb, carbofuran, 

propoxur, and Aldicarb are some of the most 

common agents that cause hazardous exposure. 

 

In aquatic creatures (frogs, arthropods, and fish), 

carbamate chemicals produce chronic and acute 

toxicity by disrupting the biochemical and 

hematological activities of the gills, liver, blood, and 

brain (Ghazala et al., 2014; Narra et al., 2016).  

 

Chromosome abnormalities, micronucleus 

production, sister-chromatid exchange, DNA 

damage, and apoptosis are all genotoxic 

consequences of these substances (Chandrakar et al., 

2020; Guanggang et al., 2013). In aves and 

mammals carbamate inhibit brain and plasma 

cholinesterase. It causes congenital abnormalities in 

cats and sheep. It also causes significant changes in 

serum protein, lipid, glucose, AST, ALT levels in 

mammals (Zaahkouk et al., 2000). 
 

Pyrethroids 

 

Pyrethroids are commonly applied as insecticides in 

both the work and home, as well as in medicine for 
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the treatment of scabies and headlice. Pyrethroid 

toxicity is problematic (Ray et al., 2004), and it 

becomes much more complicated when they are 

coformulated with piperonylbutoxide, an 

organophosphorus insecticide, or both, as these 

substances block pyrethroid metabolism. Pyrethroids 

primarily affect sodium and chloride channels. As a 

result, sensitive cells (nerve and muscle) are the 

primary targets of pyrethroid poisoning, which 

manifests as dysfunctional function rather than 

structural failure. Pyrethroid administration may be 

dentrimental to male fertility. It also causes loss of 

spermatogonia, more immature germ cells, loss of 

spermatocytes, apermatids and spermatozoa. 

Pyrethroid have been shown toxic to aquatic animals 

e. fish and shellfish (lobster, crayfish). (Chrustek et 

al., 2018) 

 

Some microorganisms used for biodegradation of 

pesticides 

 

Bioremediators are microorganisms that fulfill the 

function of bioremediation. Some of microbial 

species degrade some pesticides compounds are 

mention in Table 1: 

 

Table.1 Different xenobiotic compounds produce toxicity (Miglani et al., 2022) 

 

Xenobiotic Compounds Toxicity 

Pharmaceuticals  Reproductive organs toxicity in aquatic and terrestrial animals. 

Synthetic polymers Disruption in food webs, food chain and soil pollution 

Halocarbons Habitat elimination and 

Polychlorinated biphenyls (PCBs) Neurological Abnormalities i.e. Neuronal tissue damage, 

abnormal reflexes 

Polycyclic aromatic hydrocarbons Oxidative stress, hormonal disorders, genotoxicity, 

immunosuppresion 

 

Table.2 Different Microorganisam species capable of degrading various pesticides compounds. 

 

Microorganisams Pesticide degraded Reference 

Pseudomonas sp., 

Acenetobactor sp., Enterobacter 

sp.  

Methyl parathion and 

chlorpyrifos 

Ravi et al., 2015 

Enterobacter Chlorpyrifos Niti et al., 2013 

Bacillus, Staphylococcus sp. Endosulfan Mohamed et al., 2011 

Ochrobactrum sp. JAS2 Chlorpyrifos Abraham et al., 2016 

Bacillus subtilis Cypermethrin Gangola et al., 2018 

Fomitopsis pinicola and 

Ralstonia pickettii 

DDT  

 

Purnomo et al., 2020 

Streptomyces rimosus Deltamethrin Khajezadeh et al., 2020 

Flavobacterium spp Diazinon Yasouri et al., 2006 

Sphingobium fuliginis Diazinon, Parathion Kawahara et al., 2010 

Agrobacterium spp. Deltamethrin, Methamidophos, 

Methyl parathion, Phoxim, 

Chlorpyrifos 

Wang et al., 2012 

Enterobacter spp. Parathion, Chlorpyrifos, 

Diazinon, Isazofos, Coumaphos 

Singh et al., 2004 
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Fig.1 Diverse gene editing tools used to decrease toxicity level with the help of Bioremediation. 

 

 
 

Fig.2 Applications of CRISPR – Cas technique. 

 

 
 

 

How Pesticides is degraded by CRISPR 

 

CRISPR is a strong genetic modification technique. 

It enables researchers to readily modify DNA 

sequences and change genetic expression in bacteria, 

which can be used to create microbes that degrade 

organic pollutants. To achieve the goal of 

bioremediation, microbial groups can be 

manipulated utilising a variety of genetic 

engineering technologies (Li et al., 2020). Various 

microbial strains (e.g., Achromobacter, 

Dehalococcoides, Pseudomonas, Pseudomonas, 

Burkholderia, Rhodococcus, Comamonas, 
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Alcaligenes, Sphingomonas, and Ralstonia) have 

been created to speed up the biodegradation of 

Synthetic pollutants (Bilal et al., 2020).  

 

Organophosphate compounds degraded by using 

CRISPR 

 

Organophosphate compound is very toxic to the 

environment and human health also. For the 

degradation many technique is available like 

physical, Chemical, Biodegradation, Catabolic, Co-

catabolic, CRISPR system and many other tools are 

also available but among this all, nowadays CRISPR 

like new method is available and also easy to use 

because CRISPR is gene editing tool system and 

easily edit the genes of insecticides. CRISPR uses a 

variety of genes, including Cas proteins (Cas9 

protein), which attach to DNA and chop it, thereby 

turning off the targeted gene. The so-called CRISPR 

array is preceded by an AT- rich leader sequence. 

Unlike other technologies, CRISPRs do not require 

the use of separate cleaving enzymes. They may also 

be quickly paired with custom "guide" RNA 

(gRNA) sequences that direct them to their DNA 

targets. 

 

Create a guide RNA that matches the 

organophosphates gene, which is hazardous, and 

then alter and connect it to Cas9. Cas9 is directed to 

the target gene by the guide RNA, and the protein 

molecular scissors cut the DNA. This is the secret to 

CRISPR's power: we can alter any gene in the 

genome simply by injecting Cas9 linked to a short 

piece of tailored guide RNA. When a cell's DNA 

gets cut, it will try to repair it. Nucleases are 

proteins that trim the broken ends and put them back 

together.  
 

However, this kind of repair, known as non-

homologous end joining, is prone to errors, which 

can result in excess or missing bases. The resultant 

gene is frequently rendered useless and switched off. 

Cellular proteins can conduct a distinct DNA repair 

method termed homology directed repair if we add a 

new sequence of template DNA to their CRISPR 

cocktail. This approach is highly effective in 

organophosphate degradation since it allows us to 

alter any genome and replace it with the required 

gene. 

 

Xenobiotic compounds degraded by using 

CRISPR 

 

Microorganisms can adopt to xenobiotics presented 

into the environment via gene transfer. This 

technique can be modified further to change microbe 

metabolic pathways in order to have them digest 

dangerous xenobiotics at a quicker speed under 

specified environmental circumstances. Both 

genetically manufacturing microorganisms and 

isolating naturally occurring xenobiotic degrading 

bacteria are examples of bioremediation 

mechanisms.  

 

Xenobiotic contaminants can be degraded by 

endophytic microorganisms. Cycloclasticus sp., a 

PAH-degrading bacteria Isolated and capable of 

breaking down xenobiotic hydrocarbons like as 

naphthalene, pyrene, phenanthrene, and others. Cas9 

(or CRISPR-associated) is an enzyme protein that 

functions as a pair of molecular scissors capable of 

cutting DNA strands (Mahas et al., 2018). CRISPR 

comprises a complementary 30–40 nucleotide direct 

repeat sequence that is further processed into crRNA 

(Majumdar et al., 2017; Zhang et al., 2018). 

CRISPR can also produce guided RNA (Listgarten 

et al., 2018). Cr ribonucleoproteins are made by 

combining crRNA with the Cas protein (RNPs). 

This crRNP causes cleavage in the intruder's nucleic 

acid (DNA/RNA) (Jaiswal et al., 2019).  

 

Carbamates compounds degraded by using 

CRISPR 
 

Many Carbamates compounds are accessible, such 

as methomyl, carbofuran, aldicarb, propoxur, 

oxymyl, carbaryl etc., and they destroy the 

environment, soil, water, and human health, causing 

microorganisms such as Sphingomonas sp., 

Paracoccus sp. YM3, Sphingbium sp. CFD-1, 

Cupriavidus sp. ISTL This microorganism is used to 

minimize toxicity and create innocuous compounds, 

and the correct method to do it is through the 

CRISPR approach. By using this CRISPR system it 
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cuts the toxic gene and add the desired gene in 

specific location. As above mentioned in 

organophosphate, xenobiotic compound is also 

degraded using this technique. According to that 

compound is degraded micro-organism choose and 

desired gene is inserted so that less harmful product 

is produced.  

 

Future Perspectives 

 

Pesticides and improved planting products have 

been more popular in both developed and 

developing countries. Unfortunately, all of these 

chemicals are hazardous to varying degrees and 

have negative consequences for human health and 

the environment. Pesticide use in agriculture has 

become an unavoidable practice as the world's 

population and food demands have grown. Because 

of their extensive usage as pesticides and significant 

human toxicity, some microbes can degrade many 

chemicals Pesticides. Biodegradation, also known as 

bioremediation, has been proven to be an effective 

way to decrease pesticide contamination in the 

environment. Bioremediation is a method of 

removing pollutants by accelerating natural 

biodegradation processes. CRISPR-Cas systems 

have emerged as a breakthrough genome editing 

technology in recent years, accelerating the 

advancement of life science and our knowledge of 

life. These new technologies promise that gene 

editing will become much more efficient and easy in 

the future. 
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